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Dedicated to Professor Jack D. Dunitz, who likes the choices that structure offers us ± here are some for him!

In the second contribution on the REME phases, we enumerate the distinct networks resulting from the
stacking in an eclipsed fashion of graphitic and puckered layers. Specifically, we derive all the distinct
hypothetical lattices for up toN� 7 layers per unit cell for planar (graphitic) sheets, and up toN� 10 for slightly
puckered layers. For the networks with slightly puckered layers, there can be only an even number of layers/unit
cell, N. Additionally, we formulate an empirical rule for network stability: the structure should have either a
mirror plane or a twin operation (mirror plane, followed by a color change) bisecting it half-way up the stacking
axis. Using these simple principles, from the original multitude of 2N�1 structures for a given N, we are able to
significantly narrow down the number of potential combinations. Thus, for N� 2, we find two nets, for N� 4,
one, for N� 6, two, for N� 8, there are no such viable arrangements, and for N� 10, we exclude all but two
distinct lattices. We sketch further guidelines to continue the enumeration for higher Ns. We also propose an
−overlapping× Aufbau, by which more-complex structures are derived from the smaller, basic ones. In the last
part, we analyze the eclipsed stacking of diamond-type layers; the resulting networks are analogous (in
sequencing) to those determined for slightly puckered sheets. The networks formed from staggered diamond-
type layers are briefly discussed in the context of the related SiC polytypes.

1. Introduction. ± The previous paper in this series introduced the structural
richness of these compounds. Here, we ask the question: given that many exquisitely
complex structures are known, do the ones identified so far cover the entire range of
potential isomers?

In REME compounds, the RE sublattice interacts with the rest of the framework in
primarily an ionic way. In thinking about the bonding, we then concentrate on the
remaining anionic part, [ME]n�, where n is the formal oxidation state of RE. As we
have seen, these remnant [ME]n� assemblies are constructed from 2-D slabs. They are
then arranged (physically connected by bonds) along the third axis in various patterns.
We are concerned with the full range of lattices or graphs (be them hypothetical or
real) emerging from this family. In subsequent papers, we will explore the electronics
and relative energetics of the potential structures.

The building blocks are three types of slabs, present in the phases already known:
a) Planar, graphitic layers (hexagonal, h-REME), where atoms are three-

connected, and there are only M�E bonds (see 1). These sheets are arranged eclipsed
with respect to each other.
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b) Slightly puckered layers, in which three adjacent atoms of a hexagon go −up× with
respect to a median plane, and are able to form three bonds with a layer above, while
three other atoms go −down×, potentially generating three bonds with the layer beneath.
The pattern is shown schematically in a structure detail, in 2. In the multitude of known
structures of this type, the dihedral angle within the hexagon shown below in green
varies from 8� to 27�, with typical values grouped roughly in three intervals: (8� ± 12�),
(16� ± 18�), and (24� ± 27�). The last is characteristic for those networks with only two
layers per unit cell and alternating M�E bonds; the first two are found only when
M�M and E�E bonds are present in the structure. These layers are present in the
prototypical TiNiSi structure, or the more-complex EuAuSn, described in the previous
paper. The [ME]n� sublattices are then, in principle, four-connected nets with M�E
intralayer bonds, and M�E or M�M and E�E interlayer contacts. They are in general
orthorhombic (o-REMEs), and are stacked in an eclipsed way.

c) Puckered layers with still greater distortions (close to classical −chair× hexagons)
which, when stacked, form diamond-type structures by linking three alternate atoms of
the six-membered ring upward, and the other three downward. The choices are either
simple diamond, 3 (forgetting for the moment the M, E difference), with staggered
chair-conformation hexagons along the stacking direction, or hexagonal diamond, 4,
forming eclipsed boat-hexagons along the same axis. The dihedral angle within the
hexagon, shown below in green, varies from 40� to 45�, when the lattice is of wurtzite
type, and is ca. 60� for those with blende-type arrangements. This is the series that
includes the cubic, c-REMEs. In both of these cases, there are exclusively M�E bonds
(when M and E are distinct).
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Whereas, for planar or diamond-like layers, coloring choices occur in binary
compounds, such as AlB2 (flat sheets), or ZnS ± blende or wurtzite (diamond-type
slabs), the particular coloring of the b type, found in slightly puckered layered
structures is special for the ternary REME phases.

Let us explore the possible unit cells by examining in turn the structures arising
from these various building blocks.

General Constraints. ± The fundamental ideas used in constructing these frame-
works are based on the coloring principles embedded in graph theory. In this part, the
−networks× are assumed to be just graphs, and whereverM and E are specified, we imply
only two different (distinct) atomic points. These representations (graphs) do not
contain any metric (or a minimal one, like puckering ± really an angular metric), nor
carry any electronic connotation. For this reason, we will not discuss (at the outset) any
bond distances or angles.

Mathematically, the problem at hand is: having iA and jB layers, such that i� j�N
(N is the total number of layers in the unit cell), howmany distinct networks are formed
from the superposition of such slabs? Each layer is two-dimensional and formed from
hexagons with M�E contacts only. For the planar and slightly puckered layers (the
REME structures), we will further impose a restriction to the eclipsing of slabs (as they
are stacked), motivated by the observed structures. In the diamond-like puckered
layered arrangements, we will discuss both eclipsed and staggered situations.

We assume that the distance between layers is irrelevant (or equal), since we treat
this question, to begin with, as a graphical enumeration problem. The starting maximum
number of such arrangements (or permutations) for all the above-considered series is
2N�1, but, as we will see, the real number of choices will be diminished upon adding
further conditions.

Planar Layers. ± In this case, the building blocks are two slabs of ME stoichiometry,
which we call A and B, shown in Fig. 1. These are derived from an uncolored graphitic
two-dimensional array. The relationship betweenA and B is that, by exchanging M and
E positions in A, one obtains B. These two layers are equivalent, when there is only one
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layer per unit cell. A distinction between them is needed to study the real lattices shaped
by the superposition of more layers, for the stacking may make them nonequivalent.

We proceed with a discussion of the N� 1, 2, 3 cases, and then give the summary
results for some higher N values.

a) For N� 1, there is, of course, a single network containing only A×s (or B×s). We
will denote it as (A)A . . ., where the repeat group is placed in parentheses. The stacking
in our drawings is −vertical× (along y), but it is easier to express it in writing in
horizontal, −linear× fashion. (B)B. . . is identical to the net specified, and related to
(A)A . . . by a translation or rotation of the whole three-dimensional lattice.

b) For N� 2, there is just a unique distinct network: (AB)AB. . .� (BA)BA . . . ;
(AA)AA . . . is identical to (A)A . . . (assuming equal spacing; −pairing distortions×
would introduce a distinction), and the same is true for (BB)BB. . ., reducible to
(B)B. . . In general, this last consideration eliminates all the cases where i�N and j� 0,
or j� 0 and i�N. Layers A and B are not distinct if isolated, but are related by a
symmetry operation, as noted above ± a translation in the xz plane, or a rotation by 30�
(rotation axis perpendicular to the center of the hexagon). When the slabs are stacked,
the A/B distinction comes to the fore.

c) For N� 3, i� 2 and j� 1, there is a single selection, (AAB)AAB. . ., identical
(given our assumptions of equidistant stacking) to (ABA)ABA . . . This is also
equivalent to (BAA)BAA . . .

In general, a total exchange between A×s and B×s is a −symmetry operation× of these
lattices.

For i� 1 and j� 2, (BBA)BBA . . .� (BAB)BAB. . . In (BBA)BBA . . ., when one
exchanges A for B, (AAB)AAB. . . is obtained, but we have already counted this
system. Hence, (BBA)BBA . . .� (BAB)BAB. . .� (AAB)AAB. . .� (ABA)ABA . . .
are not distinct. Thus, for N� 3, there is only one distinct network, (AAB)AAB. . .

We summarize in Table 1 the resulting distinct possibilities for N� 1 ± 7. The
symmetries of the system greatly reduce the number of possibilities. Sometimes they
are subtle. Thus, at first sight, for N� 6, (AABABB) . . .might appear to differ from
(AABBAB) . . . But a two-fold rotation around an axis perpendicular to propagation
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Fig. 1. Types of planar layers and their derivation



line, at the asterisk in (AABABB)AA*BABB. . . converts it to . . .BBAB*AABBA-
BAA . . ., which is (AABBAB) . . .

It is evident that the number of possible arrangements (polytypes) is much smaller
than 2N�1. The problem at hand, the enumeration of all the distinct unit cells, has been
solved by Balaban and Artemi [1], and, subsequently, by Kaspi [2]. All compounds
characterized so far have only N� 1 or 2 layers per unit cell.

Slightly Puckered REME Slabs. ± The ground rule (a mild metric) in this case is
that [ME]n� nets are formed from puckered layers, with three atoms going up and three
going down, stacked in an eclipsed way as described earlier in the paper. The stacking
can lead to M�E connections only, or an assortment of M�E, M�M, and E�E bonds
between layers, as we described in some detail in the first paper in this series. From the
graphic theoretical perspective, we are not yet concerned whether M�M interlayer
bonds are actually formed; E�E and M�M merely represent two edges of a rectangle
(belonging to a ladder fragment). The type of chemical bond formed between layers is
going to be the subject of our attention in a subsequent paper. In Fig. 2 are illustrated
the major fragments of this architecture. We have chosen this rather complicated six-
layered structure in order to unambiguously illustrate the occurrence of a number of
different such building blocks. Note the four-, six-, and eight-membered rings, and the
distinctive −ladders× of four-membered rings.
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Table 1. The Number of Distinct Networks Generated by Stacking Planar Layers

N
(No. of layers per unit cell)

Possible networks No. of distinct
theoretical networks

1 (A)A . . .� (B)B. . . 1

2 (AB)AB. . . 1

3 (AAB)AAB. . . 1

4 (AAAB)AAAB. . . 2
(AABB)AABB. . .

5 (AAAAB)AAAAB. . . 3
(AAABB)AAABB. . .
(AABAB)AABAB. . .

6 (AAAAAB)AAAAAB. . . 5
(AAAABB )AAAABB. . .
(AAABAB)AAABAB. . .
(AAABBB )AAABBB. . .
(AABBAB)AABBAB. . .

7 (AAAAAAB )AAAAAAB. . . 8
(AAAAABB )AAAAABB. . .
(AAAABAB)AAAABAB. . .
(AAABAAB)AAABAAB. . .
(AAAABBB )AAAABBB. . .
(AAABABB)AAABABB. . .
(AABAABB)AABAABB. . .
(AABABAB)AABABAB. . .



Next, we begin a general analysis of the possible stacking modes. At the left side of
Fig. 3, there are two distinct (with respect to stacking) layers, still uncolored. The
obvious relation between a and b is that they are −mirror× images of each other.
Alternatively, a translated by 1/2(x� z) (if the stacking direction is y) gives b.

Fig. 2. Fundamental building blocks of REME compounds

Fig. 3. Types of slightly puckered layers
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When one restricts oneself (as we do) to exclusively M�E bonds, there are just two
ways to place into a the two atoms M and E. In this fashion arise the two distinct layers,
A andA�, parallel to each other, with the −colors× (M, E) switched. Similarly, from b are
formed B and B�, linked through a similar color correlation. Since A and A� have the
same origin, they would be identical if they were isolated single layers. However, they
are distinct when further layers are added to the unit cell.

We now apply a necessary metrical constraint. Two parallel layers, such asA andA�
(and, respectively, B and B�), cannot be stacked on top of each other. If they were, they
would then generate (were they to approach a bonding distance) only four-membered
rings along the stacking direction, instead of four- and eight-membered cycles, the
characteristic feature of the o-REME-type compounds, as discussed above1). There-
fore, A (or A�) can sit only on top or beneath B or B�; B (or B�) can be −connected× only
to A or A�.

Bond Notations. ± As noted in the first paper in this series, there are alternative and
complementary descriptions of the REME structures in terms of interlayer bonds
(A� alternating or heteroatomic, M�E; H�homoatomic, M�M and E�E) or layers
(A, B etc.). Both notations prove worthwhile; the layer notation makes the connection
with the traditional ABC layering notation, whereas the bonding notation facilitates
the visualization of the particularities of the stacking sequences. For example, the
successionAB generatesH1 bonds, fromBA resultsH1�, and so on. All the correlations
are shown below in the Scheme and detailed in Fig. 4.

The major symmetry relations between layers are, as they should be, reflected in the
bond notations. Therefore, anH1 bond is linked toH1� through a translation by 1/2(x�
z), as one A is related to B. H1 is related to H2 by a color change, as A is correlated to
A�. The same reasoning applies to the alternating bonds (A1, A1�, A2, A2�).

The utility of this notation ± seemingly complex at this point ± will become apparent
shortly. It turns out to be an effective and convenient way to highlight the fundamental
units of o-REME assemblies.

Back to generating the lattices, there is a neat way to illustrate graphically the viable
interlayer connections, namely that an A, A� layer may associate with B or B�
exclusively, andB,B�withA orA� only. This is presented in Fig. 5. All possible unit cells

Scheme. The Relationship between Bond Types and Layers
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1) Such four-membered rings occur in the interesting CaAl2Si2 structure and its derivatives, but are not the
subject of our discussion here, considering that many fewer (less than 4%) members of the REME type
adopt this arrangement.



(for a given N) are distinct descending paths in this pattern. They start from A in layer
1, and return to A in the (N� 1)th layer below.We chose to start all enumerations with
A, but one could have as well begun with A�, B, or B�, and obtained the same set of
structures.

One conclusion follows immediately: there cannot exist any unit cell with an oddN.
In this construction, A occurs only in every second row; thus, it takes an even number of
steps to go from one A to another A.

With the help of Fig. 5, we are ready to enumerate the possible distinct networks or
unit cells.

Using the obvious rules for layers, graphically made explicit in Fig. 5, one obtains
for:

a) N� 2, two possible networks:
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Fig. 4. Layer (most left) and bonding notations. On the right hand side are shown the only possible four-
membered rings and the symmetry operations relating them.



A
and

A

B B�

Or to put it into a −horizontal× format: (AB)AB. . . and (AB�)AB� . . . The notation is an
obvious derivative of that used for planar hexagonal layers. Both of these structures are
realized and are shown in Fig. 6. Note that one contains H bonds only (2-1), and the
other A type bonds (2-2).

In Table 2, we have given a so called −contracted bond notation×, which means that
one sums up all the blocks from the bond notations, for example a H1H1� fragment is
equivalent to a 2H1 block, andH2H2� is a 2H2, and anA1A2� is a 2A(12�). Therefore,
in this notation, recurring H1, H2, or A groups will be −packed× together. The numbers
in parentheses for A×s depict the original order of the A units.

b) N� 4, the algorithmic pattern of Fig. 5 generates the eight combinations
(−walks× from anA in the first row of Fig. 5 to any of theA×s in the fifth row, highlighted
in green). We exclude those combinations that can be reduced to a lower (N� 2, in this
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Fig. 5. The possible routes for connecting slightly puckered layers are those descending along diagonals in this
graph (a few diagonals are emphasized in green), starting with an A layer for n� 1.

Table 2. Possible Networks for N� 2

N-Serial No.a) Layering notation Bond notation Contracted bond notationb) Observedc) (reference)

2-1 A H1 (H1)� (H1�) � mirror plane � [3]
B H1�

2-2 A A1 (A1)� (A2�) � twin operation � [4]
B� A2�

a) The notation we use is N-serial number; thus, for instance, 2-2 is the second arrangement for N� 2 layers per
unit cell. b) Notation is explained in text. c) A check mark (�) indicates that the structure has been observed.
The literature reference is given. If the structure does not exist, then we indicate the possible reason for its
absence.



case) number of layers/cell, or those that repeat themselves. This criterion eliminates
lattices such as (ABAB)ABAB. . .� (AB)AB. . ., and (AB�AB�)AB�AB� . . .� (A-
B�)AB� . . . Besides, sequences such as (ABAB�)ABAB� . . . or (AB�AB)AB�AB. . . are
identical. There remain only two distinct arrangements, as listed in Table 3 ; the
structure of the one choice realized so far is given in Fig. 7.

c) For N� 6, we found six distinct arrangements listed in Table 4.
d) When N� 8, there are 16 prospective networks, according the assumptions we

made previously, listed in Table 5.
e) ForN� 10, there are 53 different structures conforming to the rules set out in text.
The only arrays (graphs) found among the compounds observed to date (to our

knowledge) are in fact just a few (7), summarized in Table 7. We have shown them
using both layer and bond notation. The −contracted× bonding notation lists the major
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Fig. 6. Observed networks for N� 2; typical compounds are NaAuGe (2-1) at left, and NaAuSn (2-2) at right

Table 3. Possible Networks for N� 4

N-Serial No. Layering
notation

Bond
notation

Contracted bond notation Observed
[reference]

4-1 A H1 (H1�A1�)� (H2�A2�) � twin operation � [5]
B A1�
A� H2
B� A2�

4-2 A H1 H1�H1��A1�A2�� 2 H1� 2 A(12�) No sym.
B H1�
A A1
B� A2�



blocks: H1, H2, and A×s all added together. The reason for this bonding notation will
soon become clear.

Further Constraints on REME Lattices: An Empirical Rule. ± Quite empirically,
we find that seven observed (out of 79 total for N� 10) arrangements are selected by
the following two rules.

a) There are no blocks with more than two units alike (no more than 2 H1�H1H1�,
2 H2�H2H2�, or 2 A×s of any kind�A1A2�, or A2A1�).

b) At N/2, there must be either a mirror plane or the twin operation: mirroring,
followed by a color change. The mirror plane is illustrated in Fig. 8, on the left side, and
the twin operation is at its right. A mirror plane, as was discussed above, is equivalent to
a translation by half of a unit cell in the 1/2(x� z) direction. The color change could
also be seen as either a rotation by 180�, if the rotation vector is set to be perpendicular
to any bond, or simpler, by interchanging the two colors. The permutational
consequences of mirroring and color change were given earlier; they are summarized
in compact form in Fig. 9.

The immediate consequence of this last condition is that the viable networks must
contain in the same lattice at least one H1 or one H2 (primed or not) units (it seems
that it is not necessary to have both blocks; one appears to suffice). This conclusion is
easily deduced when one looks at Fig. 9. Essentially, it means that applying a mirror
operation to layer A, one obtains B ; hence, the resulting (AB) . . . sequence contains
the required H1 bond. If instead, a twin operation is applied to A, then B� follows. This
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Fig. 7. The one network observed for N� 4; one realization is CePtGe (4-1)



(AB�) . . . combination has an alternating (A) bond. If we go on using this unit (which
doesn×t have yet the desiredH bond), and apply to it a mirror operation, the outcome is
(AB�A�B) . . ., which has anH2 block, or else, when twinning is the preferred operation,
then (AB�AB�) . . . arises. This last progression is redundant to (AB�) . . ., hence, we can
eliminate it. If one continues this rationalization, one is led to the necessity of having at
least an H block (be it H1 or H2). This last −constraint× is, in fact, the logical
consequence of having at least one of the two prerequisite symmetry operations in the
unit cell.
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Table 4. Possible Networks for N� 6

N-Serial No. Layering
notation

Bond
notation

Contracted bond notation Observed
[reference]

6-1 A H1 2H1� 2A(12)� 2H1 No sym.
B H1�
A A1
B� A2�
A H1
B H1�

6-2 A H1 2 H1� 4 A(12�12�) 4 A
B H1�
A A1
B� A2�
A A1
B� A2�

6-3 A H1 3 H1�A1��H2�A2� 3 H1
B A1�
A� H2
B� A2�
A H1
B H1�

6-4 A H1 [H1� 2 A(1�2)]� [H1� 2 A(12�)] � mirror plane � [6]
B A1�
A� A2
B H1�
A A1
B� A2�

6-5 A H1 H1�A1��H2� 3 A(2�12�) 3 A
B A1�
A� H2
B� A2�
A A1
B� A2�

6-6 A H1 (2 H1�A1�)� (2 H2�A2) � twin operation � [7]
B A1�
A� H2
B� H2�
A� A2
B H1�
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Table 5. Possible Networks for N� 8

N-Serial No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Layering
notation

A� A� A� A� A� A� A� A� A� A� A� A� A� A� A� A�
B B� B B B� B� B� B� B� B B B� B� B� B� B�
A A A� A A� A A A A A� A� A� A� A� A A
B B B B� B B� B B B B B B� B B B� B�
A A A A A A A� A A A� A A A� A A A
B B B B B B B B� B B B� B B B� B� B
A A A A A A A A A� A A A A A A A�
B B B B B B B B B B B B B B B B

Bond
notation

A2 H2 A2 A2 H2 H2 H2 H2 H2 A2 A2 H2 H2 H2 H2 H2
H1� A2� A1� H1� H2� A2� A2� A2� A2� A1� A1� H2� H2� H2� A2� A2�
H1 H1 A2 A1 A2 A1 H1 H1 H1 A2 A2 H2 A2 A2 A1 A1
H1� H1� H1� A2� H1� A2� A1� H1� H1� A1� H1� A2� A1� H1� A2� A2�
H1 H1 H1 H1 H1 H1 A2 A1 H1 A2 A1 H1 A2 A1 A1 H1
H1� H1� H1� H1� H1� H1� H1� A2� A1� H1� A2� H1� H1� A2� A2� A1�
H1 H1 H1 H1 H1 H1 H1 H1 A2 H1 H1 H1 H1 H1 H1 H1
A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1�

Contracted
bond
notation

Obs. (ref.) 6 H1 5 H1 4 H1 3 H1 4 H1 3 H1 No sym. No sym. 3 H1 6 A 4 A 3 H1 3 A No sym. 5 A 3 A
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Table 6. Possible Networks for N� 10

N-Serial No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Layering A� A� A� A� A� A� A� A� A� A� A� A� A� A� A� A� A� A�
notation B B� B B B B B� B� B� B� B� B� B� B B B B B

A A A� A A A A� A A A A A A A� A� A� A� A�
B B B B� B B B B� B B B B B B B B B B
A A A A A� A A A A� A A A A A� A A A A
B B B B B B� B B B B� B B B B B� B B B
A A A A A A A A A A A� A A A A A� A A�
B B B B B B B B B B B B� B B B B B� B
A A A A A A A A A A A A A� A A A A A
B B B B B B B B B B B B B B B B B B

Bond A2 H2 A2 A2 A2 A2 H2 H2 H2 H2 H2 H2 H2 A2 A2 A2 A2 A2
notation H1� A2� A1� H1� H1� H1� H2� A2� A2� A2� A2� A2� A2� A1� A1� A1� A1� H1�

H1 H1 A2 A1 H1 H1 A2 A1 H1 H1 H1 H1 H1 A2 A2 A2 A2 A1
H1� H1� H1� A2� A1� H1� H1� A2� A1� H1� H1� H1� H1� A1� H1� H1� H1� A2�
H1 H1 H1 H1 A2 A1 H1 H1 A2 A1 H1 H1 H1 A2 A1 H1 H1 H1
H1� H1� H1� H1� H1� A2� H1� H1� H1� A2� A1� H1� H1� H1� A2� A1� H1� A1�
H1 H1 H1 H1 H1 H1 H1 H1 H1 H1 A2 A1 H1 H1 H1 A2 A1 A2
H1� H1� H1� H1� H1� H1� H1� H1� H1� H1� H1� A2� A1� H1� H1� H1� A2� H1�
H1 H1 H1 H1 H1 H1 H1 H1 H1 H1 H1 A2 H1 H1 H1 H1 H1 H1
A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1�

Contracted
bond
notation

Obs. (ref.) 8 H1 7 H1 6 H1 5 H1 4 H1 3 H1 6 H1 5 H1 4 H1 3 H1 3 H1 4 H1 5 H1 4 H1 3 H1 4 A 3 H1 No sym.
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Table 6 (cont.)

N-Serial
No.

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Layering A� A� A� A� A� A� A� A� A� A� A� A� A� A� A� A� A� A� A� A� A�
notation B� B� B� B� B� B� B� B� B� B� B� B� B� B� B� B� B� B� B B B�

A� A� A� A� A� A� A A A A A A A A A A A A A� A� A
B� B B B B B B� B B� B� B� B� B B B B B B B B B
A A� A A A A A� A� A A A A A� A� A� A A A A� A� A
B B B� B B B B B� B� B B B B B B B� B� B B B B�
A A A A� A A A A A A� A A A� A A A A A� A� A A�
B B B B B� B B B B B B� B B B� B B� B B B B� B
A A A A A A� A A A A A A� A A A� A A� A� A A A
B B B B B B B B B B B B B B B B B B B B B

Bond H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 A2 A2 H2
notation H2� H2� H2� H2� H2� H2� A2� A2� A2� A2� A2� A2� A2� A2� A2� A2� A2� A2� A1� A1� A2�

H2 A2 A2 A2 A2 A2 A1 H1 A1 A1 A1 A1 H1 H1 H1 H1 H1 H1 A2 A2 H1
A2� A1� H1� H1� H1� H1� H2� A1� A2� A2� A2� A2� A1� A1� A1� H1� H1� H1� A1� A1� H1�
H1 A2 A1 H1 H1 H1 A2 H2 A1 H1 H1 H1 A2 A2 A2 A1 A1 H1 A2 A2 A1
H1� H1� A2� A1� H1� H1� H1� A2� A2� A1� H1� H1� A1� H1� H1� A2� A2� A1� A1� H1� H2�
H1 H1 H1 A2 A1 H1 H1 H1 H1 A2 A1 H1 A2 A1 H1 A1 H1 A2 A2 A1 A2
H1� H1� H1� H1� A2� A1� H1� H1� H1� H1� A2� A1� H1� A2� A1� A2� A1� A1� H1� A2� H1�
H1 H1 H1 H1 H1 A2 H1 H1 H1 H1 H1 H1 A2 H1 H1 A2 H1 A2 H1 H1 H1
A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1�

Contracted
bond
notation

Obs. (ref.) 5 H1 4 H1 3 H1 No sym. 3 H1 4 H1 4 H1 3 H1 3 H1 3 A 3 A 3 H1 3 A No sym. 3 A 4 A 3 A 3 H1 8 A 6 A � [8]
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Table 6 (cont.)

N-Serial No. 40 41 42 43 44 45 46 47 48 49 50 51 52 53

Layering
notation

A� A� A� A� A� A� A� A� A� A� A� A� A� A�
B� B� B� B� B� B� B� B� B� B� B� B� B� B
A� A� A� A� A� A� A� A� A A A A A A�
B� B� B� B B B B B B� B� B B B� B
A� A A A A� A� A� A A� A� A� A� A A�
B B� B B� B B B B� B B B� B B B
A A A� A� A� A A A A� A A A� A� A�
B B B B B B� B B� B B� B� B B B
A A A A A A A� A A A A A� A� A�
B B B B B B B B B B B B B B

Bond
notation

H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 A2
H2� H2� H2� H2� H2� H2� H2� H2� A2� A2� A2� A2� A2� A1�
H2 H2 H2 A2 A2 A2 A2 A2 A1 A1 H1 H1 A1 A2
H2� A2� A2� H1� A1� A1� A1� H1� H2� H2� A1� A1� A2� A1�
A2 A1 H1 A1 A2 A2 A2 A1 A2 A2 H2 A2 H1 A2
H1� A2� A1� H2� A1� H1� H1� A2� A1� H1� A2� A1� A1� A1�
H1 H1 A2 A2 A2 A1 H1 A1 A2 A1 A1 A2 A2 A2
H1� H1� H1� H1� H1� A2� A1� A2� H1� A2� A2� A1� A1� A1�
H1 H1 H1 H1 H1 H1 A2 H1 H1 H1 H1 A2 A2 A2
A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1� A1�

Contracted
bond
notation

Obs. (ref.) 4 H1 3 H1 3 H2 No sym. 5 A 3 A 3 A 4 A 3 A � [7] 3 A 7 A 5 A 10 A
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Table 7. Existing Networks

N-Serial
No.

Layering
notation

Bond
notation

Contracted bond notation Ref.

2-1 A H1 2 H1� (H1)� (H1�) � mirror plane [3]
B H1�

2-2 A A1 2 A(12�)� (A1)� (A2�) � twin operation [4]
B� A2�

4-1 A H1 (H1�A1�)� (H2�A2�) � twin operation [5]
B A1�
A� H2
B� A2�

6-4 A H1 [H1� 2 A(1�2)]� [H1� 2 A(12�)] � mirror plane [6]
B A1�
A� A2
B H1�
A A1
B� A2�

6-6 A H1 (2 H1�A1�)� (2 H2�A2) � twin operation [7]
B A1�
A� H2
B� H2�
A� A2
B H1�

None for N� 8

10-39 A�
�
�

�
B� H2

�
�

�
A1 (H2�A2�� 2 H1�A1)� (H2��A2� 2 H1�A1�) � mirror plane� [8]

B� A A2� H2� (A1� 2 H2�A2��H1)� (A1�� 2 H2�A2�H1�) � mirror plane

A B H1 H2
B A H1� A2�
A B� A1 H1
B� A� H2� A1�
A� B A2 H2
B A H1� H2�
A B H1 A2
B A� A1� H1�

10-49 A�
�
�

�
B� H2

�
�

�
H1 [H2� 2 A(2�1)�H2��A2]� [H1�� 2 A(12�)�H1�A1�] � twin operation

�H1� 2 A(1�2)�H1��A1]� [H2�� 2 A(21�)�H2�A2� ] � twin operation

[7]
B� A� A2� A1�
A B A1 A2
B� A� H2� H1�
A� B� A2 A1
B A H1� H2�
A B A1 A2
B� A� A2� A1�
A B H1 H2
B A A1� A2�



In the last column in Tables 2 ± 6 (−Observed×), we put a check mark for those
structures that are permitted by the above rules, or else note the −disobeyed× empirical
conventions, presumably leading to their nonexistence. By −no sym.× we mean that there
is no mirror plane or twinning operation at the middle of the unit cell, and by nH1, nH2,
nA(..), we simply suggest that the first rule is violated, and there are more of the two
consecutive blocks of the same kind in the sequence. Of course, we cannot be sure that
every phase has been synthesized. However, it is quite remarkable, we submit, that two
simple rules −eliminate× all 16 combinations otherwise (without these two assumptions)
possible for N� 8, and 51 of the 53 N� 10 arrangements.

Blocks and Twinning: Another View of What is Possible. ± The empirical regularity
points to viewing these assemblies from yet a different perspective. Thus, it appears that
for N� 6 and N� 10, the networks could be −decomposed× in two interesting ways: in
the first, they may be conceived by simply linking basic units, or −blocks×, made up of
two or four layers. The second construction principle involves overlaying, for example
for N� 6 (6-6), of two blocks of N� 4 (4-1), but, in order to fulfill all the layer linkage
constraints (no B can be stacked on top of B, or A over A), we must eliminate the
repeating slabs. See Figs. 10 (N� 6, structure 6-4) and 11 (N� 6, structure 6-6), where
we present two possible decompositions for each of these networks. One is derived
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Fig. 8. Mirror plane and twin operations emphasized with the burgundy thick line



from the −combination× of two existing 4-1 unit cells, which, as stipulated above, must
skip the redundant layer at their ending points, where the layer would repeat. The same
composition is possible if one uses instead two 4-2 networks, even though this lattice by
itself is not a possibility (given that it has no mirror or twin operation within it). In
Figs. 12 (N� 10, 10-39 and 10-49) and 13, we give the breakdown into 6-4 and 6-6 cells
for the two distinct and existing cases of N� 10. It is impressive that these networks
could be seen as being entirely built up from the basic ones, 2-1, 2-2, and 4-1. Or, from a
different perspective, that they could be constructed from the −preceding× network in
the series of real compounds (see Table 7).

More generally, it appears that, for a sufficiently largeN (greater than 6), a REME
lattice could be derived from two (N/2� 1) lattices, in which the top and middle
repeated layers are considered just once.

Following this algorithm, one could deduce the next viable network, not yet
discovered. This is one havingN� 12 layers/unit cell, which should formally come from
two N� 7 layered structures. Or, following a different approach, by starting from a
viable N� 6 unit cell and then applying either a mirror or a twin operation to it. The
first scheme is impossible, because there is no self-standing network with an odd
number of atoms. We are left with the second Aufbau for these assemblies. If we start
from 6-4 (AB�ABA�B) . . . and apply the mirror operation, we then get (AB�ABA�

��������� 	
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Fig. 9. Mirror, color change, and twin operations that transform the layers (A, A�, B, B�). Below is presented a
scheme with these conversions. * Note that a mirror operation is equivalent to a translation along 1/2 (x� z), if y

is the stacking direction.



BAB�ABA�B) . . . If we perform a twin operation, then (AB�ABA�BA�B�AB�AB�) . . . is
reached. The first combination seems a valid choice, having a median mirror plane and
no more than two similar uninterrupted blocks, whereas the second has 3 A successive
units, making it unlikely. Starting now from 6-6, (ABAB�A�B�) . . . and applying the
mirror operation, one gets: (ABAB�A�B�A�B�A�BAB) . . ., which has 5 H2 blocks, and,
thus, is very implausible. The twin operation affords (ABAB�A�B�ABAB�A�B�) . . .,
which is redundant to the original 6-6, (ABAB�A�B�) . . . Without doing any further
permutations, we can then ascertain that, if a unit cell with N� 12 is discovered, then
the (AB�ABA�BAB�ABA�B) . . . form would be a promising candidate for its structure.

Continuing our logic, an N� 14 unit should be formed from two N� 8 blocks, by
subtracting the two repeating layers, as prescribed earlier for N� 6 or 10. Given that
there is no N� 8 potential network, or any straightforward candidate that by twinning
might develop into a viable N� 14 lattice obeying the previously discussed assump-
tions, one might then consider its formation from two N/2� 14/2� 7 layered unit cells,
with a mirror or twin operation. This too is unlikely, considering that an autonomous
unit with an odd N cannot exit. There are obviously possibilities of having this lattice
formed from even smaller pieces, such as three N� 4 units, or an N� 6 and two N� 4,
where one would eliminate four redundant slabs.
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Fig. 10. The first possible lattice for N� 6 (YbAuGe, 6-4), and its decomposition into smaller units



Wewill not continue our enumeration, but the empirical principles illustrated above
should provide sufficient guidance in searching for possible distinct arrangements when
N is large.

A consequence derived from the fact that there cannot exist any unit cell with N
odd, is that if there exist such layered structures with an oddN, then, inevitably, at least
one or more of its layers must be seriously distorted from its original conformation. This
is indeed the case for a rare number of layered phases that have three layers/unit cell
and crystallize in the space group P-6m2 (see Entry 9 in Table 2, Appendix, of previous
paper). In order for those lattices to have an odd number of slabs/unit cell, one of the
slabs is −planarized×, and the other two are distorted more toward the hexagonal
diamond conformation, as if to −compensate× for the deformation of the first −graphitic×,
layer. However, as we detailed in our previous paper, there are no observed structures
with an odd number of layers and all slabs puckered in a −three adjacent −up× and three
adjacent down× way.

In the following papers in this series, we will put this discussion in a chemical
context and explore the electronic preferences in the smallest unit cells, by analyzing
when a certain structure is created as a function of the identity of M and E.
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Fig. 11. The second possible lattice for N� 6 (CaCuGe, 6-6), and its decomposition into smaller units



Diamond-Like Structures. ± For hexagons in a chair-like conformation (three atoms
alternately go up from a median plane to form bonds to the next slab, and the other
three go down), there are two distinct layers, which we will again call a and b. They are
illustrated in Fig. 14.

The mirror image of a is b, and this relation holds as well for the colored 2-D lattices
they generate. The connection between a and A (or A�), is evident from Fig. 14. To get
A� one has only to −switch× theM and E atoms from their sites inA.B andB� are derived
from b in the same way. In stacking in the third direction, no connections (forming six-
membered rings) can occur between a and a, or b and b, as they are parallel to each
other. Again, such a-a, b-b layering would give rise only to four-membered rings, as in
the AlSi layers in CaAl2Si2 structure [9 ± 13].

If a comes on top of b, then, in the stacking direction are formed −boat× hexagons,
and the layers are eclipsed. The lattice resulting will, thus, belong to the hexagonal
diamond (lonsdaleite) type when uncolored, and to thewurtzite type when colored (see
Fig. 15, left). The layering possibilities are easily seen to be identical with what we
worked out above for the slightly puckered hexagonal slabs. However, the only
assemblies experimentally determined so far are (AB�)AB� . . . (Entry 7 in Table 2,
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Fig. 12. The two valid networks for N� 10. On the left is EuAuSn (10-39), and on the right is CaAuSn (10-49).



Appendix, in the preceding article) and (AB)AB. . . (Entry 9 in Table 2, Appendix, in
the preceding article) lattices.

When a is on top of a, or b of b, and one adds a translation within the (x� z) plane,
then −chair× hexagons are formed along the third axis (y in this case), as may be seen in
Fig. 15, right. Overall the structure is then the diamond one when uncolored, or zinc-
blende when M and E are introduced. The slabs are in this instance staggered.

One can also have combinations of staggered and eclipsed layerings progressing in
the third dimension.

Perhaps richest in examples of polytypes and closest to [ME]n� networks is SiC
chemistry. The material has commercial applications; as a result, there are numerous
studies of SiC, and many notations have been introduced in order to create a unified
understanding of their variety. No fewer than 70 hexagonal, one cubic, and 170
rhombohedral lattices have been experimentally identified, with unit cell lengths
ranging along the stacking direction from 4 to more than 1500 ä. TheABC notation, in
SiC chemistry, is parallel to the one employed here [14 ± 21]. In our way of thinking,
these structures have only one kind of layer, which is translated within the unit cell in
the plane perpendicular to the stacking direction, at one-fourth, one-half, and three-
quarters of the stacking axis. The net result is that, within one such unit cell along the
stacking axis, there are three such translationally dissimilar slabs, and all together give
rise to staggering in these lattices. Therefore, in SiC, the coloring, were it to be called

��������� 	
����� ���� ± Vol. 86 (2003) 1705

Fig. 13. The decomposition into smaller units for N� 10



that, would be with one color since there is a single distinct layer available. It seems that
studies on SiC are typically concerned with describing the structures experimentally
observed; there appears to be little consideration of the full range of potential
structures.

The most familiar SiC structures are the cubic zinc-blende type, �-SiC (3C in the
Ramsdell notation [17], where 3 designates the number of layers per unit cell and C
cubic symmetry), with the layers staggered, and wurtzite �-SiC (2 H, for 2 layers and
hexagonal symmetry), having the slabs eclipsed in the 3rd dimension. The blende form
has in the ABC notation the layer sequence (ABC)ABC . . ., and wurtzite (AB)AB. . .
Interestingly, the pure 2 H polytype has not been found yet. Other common units are
4 H, with the order (ABCB)ABCB. . ., and 6 H, (ABCACB)ABCACB. . . When the
layers are at different heights in the crystal, rhombohedral symmetry is generated;
nevertheless, such lattices still can be described in the hexagonal system. The smallest
rhombohedral variant is 15R, with the unit cell: (ABCACBCABACABCB) . . . The
other polytypes are combinations of cubic and hexagonal stacking sequences.
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Fig. 14. Types of −diamond-like× puckered layers



Since these cases are thoroughly explored in the SiC literature, we only mention
them here and make the connection between the ABC notation from SiC surveys and
ours. In general, the REME phases avoid the multitude of SiC polytypes [22 ± 27]. Why
this is so remains to be explained.

Conclusions. ±We have derived several algorithms for enumerating and selecting as
likely the theoretically distinct unit cells, consisting of graphitic, slightly puckered or
puckered diamondoid layers, stacked in an eclipsed way along the third direction. The
first two cases we have explored in detail, and for the third we inferred the effects.

When the stacked slabs are two-dimensionally planar, we have enumerated all the
potential unit cells up toN� 7. Only theN� 1 and 2 cases are known. For the networks
with puckered layers, we first concluded that there must be only an even number, N, of
layers/unit cell. Moreover, we found an empirical rule, stating that any potentially
realizable network must have either a mirror plane or a twin operation (mirror plane,
followed by a color change), dissecting it half way −up× the unit cell. Using these simple
principles, from an original multitude of 2N�1 structures, we were able to significantly
narrow down the number of possible combinations. Thus, for N� 2, we found two
distinct nets, for N� 4, one, for N� 6, two, for N� 8 no viable arrangements, and, for
N� 10, we excluded all but two distinct lattices, which in fact are those observed. We
have sketched further guidelines, to continue the enumeration for higher N×s.
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Fig. 15. Left: a cut from the hexagonal diamond network, showing the eclipsed stacking, and boat-shaped rings
along y. Right: zinc blende, a −staggered× stacking, forming chairs along y.



In addition, we proposed an −overlapping× Aufbau, by which more-complex
structures are derived from the smaller, basic ones. In the last part of this article, we
analyzed the eclipsed stacking of diamond-type layers, and concluded that resulting
networks are analogous (in sequencing) to those determined for slightly puckered
sheets. The arrangements formed from staggered diamond-type layers were briefly
discussed in the context of the related SiC polytypes.

In the following paper in this series, we will approach the electronic puzzles that
arise in the case of slightly puckered structures, and argue in favor of electronic effects
deciding over a layering or another.

We are thankful to the present and pastHoffmann group members for inspiring and motivating discussions,
and National Science Foundation for the financial support through the grant no. NSF DMR 0073587.
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